
IOSR Journal of Computer Engineering (IOSR-JCE)  

e-ISSN: 2278-0661,p-ISSN: 2278-8727 

PP 72-79  

www.iosrjournals.org 

International Conference on Future Technology in Engineering – ICFTE’16                                           72 | Page 

College of Engineering Perumon 

 

NLP Based Event Extraction from Text Messages 
 

Aneesh G. Nath, Krishnanth V, Kevin Biju Mathew, Pranav T S, Sarath Gopi 
Department of Computer Science &Engg.,T K M College of Engg., Karicode, Kollam-691005, Kerala, India. 

  

Abstract: Natural language processing has made its mark in many of the applications recently released. The 

process which helps in communication and handling natural language by machines has led to exploration in the 

field of computer science and machine learning. In this paper, we propose an application which extracts events 

from text messages and adds them to the calendar and notify on specific time. The text message is initially 

treated by a lexical analyzer and split into tokens and these tokens are taken in as the input to the POS tagging 

phase. After proper tagging it’s provided to the parser. A parser is provide with the grammar which is 

developed after examining a set of messages and its general trend. The parser constructs the parse tree 

according to the grammar from which we obtain the relevant parts of the message that is event, date, time and 

place. After successful extraction these are mapped on to the calendar by using a cross platform. Since the 

natural language processing does better in python than other languages and converting to an application is 

done by a cross platform, Kiwi, which helps to convert python code to java code. Since java code is better for 

android the application works well.  

Keywords: Tokenizing; Grammar; Parser; Event Extraction; Kivy; Buildozer 

 

I. Introduction 

In the present world common people receive a lot of text messages as a notification for them about 

certain events and people do add them to calendar in order to notify as if the numbers of such messages are 

large. People follow various methods like keeping a note on them in a book, adding the event to the calendar 

manually so that they will notify on the day even if we forget about it. Adding to calendar makes alerts on the 

mobile based on the event and meeting date.  

Since the world is so hectic, manually adding data to a calendar after checking message requires a lot 

of time. Messages are of many types: Personal messages, official, notification type etc. The main domain of our 

concern is the messages which arrive with an event in it. It includes messages having a date, time, event, and 

place or either of these present which indicates an event. 

Our project aims at automating the process of extraction of event and adding it on to the calendar. We 

classify the arriving messages into events, date, time and place if any of the combination is present and making 

use of natural language processing. We takes the event and maps on to the calendar with the appropriate date 

provided in the message. Thus the main concentration is on 4 major tasks.  

 Subject extraction 

 Date extraction 

 Time extraction  

 Place extraction. 

 

The extraction is based on the grammar. A grammar includes certain rules which are to be considered 

to include and exclude words based on the tags. NLP plays a key role in this process. An application was 

developed in order to implement this by integrating python code with android. A number of test cases were 

considered which led is us to find common pattern in the messages and so that define a grammar. Grammar 

helps us to construct a tree and this tree will result into various extractions. Thus we get our event mapped on to 

the calendar and notify the user at right time. 

 

II. Literature Survey 
On a daily basis, most email users will send and receive numerous emails of varying types thereby 

generating massive amounts of digital communication. At present, it is the user‟s responsibility to filter and 

archive all of her email data which, depending upon the average number of messages she receives, may be an 

extremely time consuming task. Often important information is not properly archived or noted and, as a result, 

lost in a sea of email communication. The problem of event extraction from incoming message has been 

approached in the past by numerous research efforts. Julie A. Blackand,  NisheethRanjan of Stanford University 

proposed a system for Automated Event Extraction from Email[1].To mitigate the problems associated with 



  NLP Based Event Extraction from Text Messages 

International Conference on Future Technology in Engineering – ICFTE’16                                           73 | Page 

College of Engineering Perumon 

event extraction from emails, they proposed an architecture for automated event extraction from incoming email 

messages. A successful system will properly classify messages that contain event information, attempt to 

perform information extraction to isolate the specifics of the event (date, time, location, title, and participants), 

present all of this information to the user for confirmation. Three types of email were defined as follows: 

Official meeting emails are all messages that contain event information clearly delimited from all other text in 

the email. Most frequently, seminar announcements are presented in this format and would fall into this 

category. Personal meeting emails are meeting proposals in which the specifics of the meeting are presented 

within the body of the email itself. We term such emails as personal meetings as this format is most commonly 

used for friends and acquaintances to propose meetings.Other emails are all incoming messages that we deem to 

be non-event related. 

 

Fig 1: architecture of information extraction system 

 

The raw email data is exported to a single text file where personal, official, and otheremails are 

demarcated by XML tags. This single email file is then processed by a Perl (pre-process.pl) and separated out 

into three separate files containing personal meeting emails, official meeting emails, and other emails 

respectively. All three output files are passed through another Perl script (strip-quoted.pl) that strips all quoted 

text from the emails. We do this because we only want to find event information in the real body of the email 

message, not in the entire thread of the email conversation contained within the email. 

 

1.1 ANNIE 

Developed at the University of Sheffield, ANNIE – a Nearly New Information Extraction 

System – was used as a named entity recognizer after the pre-processing step. ANNIE helps to provide tags of 

people, locations, dates, parts of speech, and sentence boundaries. These tags appear in the outputted body of the 

raw email as XML tags wrapping the recognized text. Later, these tags are relied upon for additional 

information about the email. ANNIE provides a tokenizer, a gazetteer, a sentence splitter, a part of speech 

tagger, a semantic tagger, an orthographic coreferencer, and a pronominal corefrencer. These components can 

be used independently of one another to provide different annotations required at different points in the system 

developed. 

The ANNIE pipeline used was composed of the tokenizer, the gazetteer, the sentence splitter, the part of speech 

tagger, and the named entity transducer.  

 

1.2 TF-IDF-based Categorization 

In order to categorize different emails into the three categories a similarity measure based on TF-IDF (Term 

Frequency – Inverse Document Frequency) was used. In addition to this similarity measure, numerous domain 

specific heuristics with hand-tuned weights were defined. This is described in more detail below. 

 

1.3 Information Extraction 

In order to extract information from the categorized email messages, the RAPIER algorithm proposed 

by Califf and Mooney was used. RAPIER uses pairs of sample documents and filled templates to induce pattern 

match rules that directly extract fillers for the slots in the template. It employs a bottom up learning algorithm 

which incorporates techniques from several inductive logic programming systems to learn patterns that include 

constraints on the words and part of speech tags present in the filler and surrounding text. 

 

1.4 RAPIER (Robust Automated Production of IE Rules) 

RAPIER‟s learning program learns rules that use constraints on words and on part of speech tags. It 

trains on a training set where each training example is a collection of three files: (a) email.orig, the original 

email, (b) email_out, the original email after passing it through a sentence splitter and part of speech tagger, (c) 



  NLP Based Event Extraction from Text Messages 

International Conference on Future Technology in Engineering – ICFTE’16                                           74 | Page 

College of Engineering Perumon 

email.template, a filled event template containing the date, time, location, and title of the event contained in the 

email. ANNIE‟s sentence splitter and POS tagger export their output as verbose XML files where the POS tags 

were contained in attributes on <token> tags around each text token created by the ANNIE tokenizer. RAPIER 

expected email_out to be in the format of “word/tag” where „tag‟ is the POS tag of „word‟.  

 

1.5 Perl based Pattern Matching 

In addition to the RAPIER system discussed briefly above, an information extraction pattern matcher 

which relies upon the information returned by ANNIE to complement the raw email data when extracting the 

specifics of a meeting or event from an incoming email message. To simplify the problem, the focus was only 

on extracting only the date, location and title of the event using a few key features. 

They weren‟t able to achieve the performance necessary for deploying the information extraction system as a 

plugin to an email client.  

Appointment information extraction from short messages 

In 2011 Choong-Nyoung Seon and team proposed a system for appointment information extraction from short 

messages in mobile devices with limited hardware resources[3].The proposed system extracts temporal (dates 

and times) and named instances (locations and title) from Korean short messages in an appointment 

management domain. To efficiently extract temporal instances with limited numbers of surface forms, the 

proposed system uses well-refined finite state automata. To effectively extract various surface forms of named 

instances with limited hardware resources, the proposed system uses a modified hidden Markov model (HMM) 

based on character n-grams. 

 Fig 2: The overall architecture of Seon‟s system 

 

In the temporal instance extraction part, the proposed system extracts temporal instance candidates (i.e. 

dates and times) using the well-known FSA. Then, the system converts the temporal instances into machine-

manageable forms. In the named entity extraction part, the proposed system extracts named instance candidates 

(i.e. locations and the title) using a modified HMM based on character n-grams.  

Temporal instance extraction using FSA Although short messages in an appointment domain often 

include many incorrect words, temporal instances like dates and times are usually expressed correctly because 

they are very important in appointment messages. In addition, temporal instances are expressed in tractable 

numbers of surface forms in order to allow message receivers to easily understand. 

Fig 3: Temporal instance using FSA 



  NLP Based Event Extraction from Text Messages 

International Conference on Future Technology in Engineering – ICFTE’16                                           75 | Page 

College of Engineering Perumon 

Named entity extraction was done using a modified HMM and decision trees. Unlike dates and times, 

locations and titles not only have various surface forms, but their constituent words are also not included in a 

closed set. The proposed system efficiently extracted temporal instances with limited numbers of surface forms 

by using FSA. To effectively extract various surface forms of named instances with small hardware resources, 

the proposed system used a modified HMM based upon character n-grams. 

 

III. Proposed Working Of The Application 
The whole purpose of the project is to determine whether an event details are specified in a text 

message. If details are present the map the details to calendar. The input for the system is the text message 

received by the user in his/her phone and the final output is a calendar event. There are different stages of the 

project as shown in the figure.  

 

 
Fig 4: Project pipeline 

 

3.1 Tokenizing 

The message obtained by the user is stored as a string and it contains a group of words. The string is to 

be split into tokens. For doing this we use a splitstr() function. splitstr() function takes the string as the input and 

separates each words as tokens by checking the whitespace and periods. Each of the words are stored in an 

array. The array is returned by the function. These tokens thus obtained are passed to POS tagger. The tokens 

obtained contains words, brackets, „.‟. Normal split() function separates the words based on white space only. 

To optimize the processing, the string like”We cordially invite you”, we hereby inform you”, etc. are removed 

from the string and then tokenized. 

 

3.2 POS Tagging 

Noun, verb, propositions, etc. are the different part of speech tagging. Different part of speech tagging 

should be introduced in addition to the common POS tagging present in the English grammar for making date 

and time processing easy. For adding the additional POS tagging to the grammar we have defined a list of 

regular expression as rgt. The list of POS tagging is shown in the table. 

 

TABLE I: POS Tagging 
SAL Salutation 

EX Expression 

PUN Punctuation 

DATESPEC Date specified 

DATEUNS Date unspecified 

CON Conjunction 

DT Determinant 

VB Verb 

MD Modal 

DAYS Day 

MONTH Month 

TM Time 

NNS Noun 

IN Proposition 



  NLP Based Event Extraction from Text Messages 

International Conference on Future Technology in Engineering – ICFTE’16                                           76 | Page 

College of Engineering Perumon 

The additional tags introduced in are DATESPEC for dates which are in the standard format, 

DATEUNS for the date which are not in the standard format, DAY for Monday, Sunday, etc. MONTHS for 

months (January, February, etc.), TM for time. Except of TM all the others are additional are used for making 

the date processing easy. 

The regular expression define are passed to nltk.RegexpTagger() to convert regular expression to tags 

as regexp_tagger. Tokens obtained after tokenizing are passed to the regexp_tagger.tags which returns tokens 

with their POS (part of speech) tags. An example is shown below. 

Text message:  

 
After POS tagging:  

 
 

3.3. Parser 

Word which are obtained are after POS tagging may not be contain event information. These words are 

to be eliminated. Grammar is defined so as to eliminate the words which are of no use. There are two part in the 

grammar: chunking and chinking. Chunking are the words which are required for processing and chinking are 

the words which are not required for processing. Chunking part is defined in {} and chinking part is defined in } 

{ . The grammar used in this project is shown below: 

 
Since verb and expression doesn‟t contain the information those are eliminated. 

This grammar is passed to nltk.regexpparser() and the result is stored in cp. Words with their POS tags are 

passed to cp.parse(). Regexppraser is used to find the chunk structure for a given sentence, 

the RegexpParser chunker begins with a flat structure in which no tokens are chunked. The chunking rules are 

applied in turn, successively updating the chunk structure. Once all of the rules have been invoked, the resulting 

chunk structure is returned.  

 

3.4. Event extraction 

An event contains details like subject, place, date and time. A message containing event may or may 

not contain all the details. So the event extraction process is divided into 4 parts namely subject extraction, place 

extraction, date extraction and time extraction. 

3.4.1. Subject extraction 

Subject of the message is the reason for which the event is held. In most of the case subject appears to be the 

first noun. The subject can be multiword. So the word which are adjacent are also processed to check whether it 

is a part of the subject. If the adjacent words are noun, conjunctions or digits then they are added to subject. 

3.4.2. Place extraction 

Most of the messages the location of the event is specified comes after words like in, at, near, @,etc. These are 

stored in an array. The tokens are checked for these word and the noun appearing after these words are added to 

place. As is the case of subject, place can be of multiword. So the adjacent nouns appearing after the words 

specified are added to the place. 

3.4.3. Date Extraction 

The standard format used for date is DD/MM/YYYY. Date specified all the other forms are converted 

to this format. There are two ways to specify the date. One is in the direct form as shown above and some 

variants of it like DD/MM/YY, DD-MM-YYYY, DD-MM-YY,etc. 

The other ways are like today, tomorrow, this Sunday, next Monday, 2
nd

 of April, etc. for each of these 

case different method should be applied. For example for the case were “this Sunday” is specified we have to 

get value of the present day like for Sunday is 0, Monday is 1,so on. Then we have to get the difference in value 

of the day specified in the message and present day and add that difference to present date. For the case of “next 

Sunday” we have to do the same procedure and then add 7 to the date. For the case of “2
nd

 April” we have to 

replace the date and month field of present date with the date specified in the message.  



  NLP Based Event Extraction from Text Messages 

International Conference on Future Technology in Engineering – ICFTE’16                                           77 | Page 

College of Engineering Perumon 

For performing the date operation we use date module in python. timedelta() function is used for the changing 

the date by specifying the number of days. Various other function are also used for the returning the month and 

day value. 

 

3.4.4. Time Extraction 

Time can also be specified in many ways like 930 am/pm,9.30 AM/PM,9, etc. time which have am or 

pm can be directly identified from the message and can be added to the time. But for the other cases the digits 

appearing after words like at, from, after, etc. are added to time. By default am is given to the time which 

doesn‟t have the am or pm part. 

 

3.5 Validation  

It is the process were the event details are checked for validity. If an event contain the subject and any 

other part then they are taken as a valid event. But there can be cases were the date and time extracted can be 

invalid. To check for date validity, date obtained are passed to check_date() function which return 1 if it is true 

and 0 if it is not. If date is invalid the date part is set are null. 

 

3.6 Mapping to Calendar 

The process of converting to an application involves in this stage. The extraction process is 

implemented with the python language and converting to application an integration process, to integrate java 

classes with python, is required as Android works well with java. The java platform can also be used for 

extraction since they are not much efficient compared to python this process is involved so as to have better 

results with efficiency. Inorder to convert the python library pyjnius is used which grants access to java classes. 

The reflection in java is made used here where it makes to inspect classes, interfaces, fields, and methods at 

runtime, without knowing the names of the classes, methods etc at compile time.  

 

Classjnius. PythonJava Class: Base for creating a Java class from a Python class. This allows to implement java 

interface completely in Python. A Python class is created that mimic the list of declaredjavainterfaces. When an 

instance of this class to Java is given, Java will just accept it and call the interfaces methods as declared. Under 

the hood, we are catching the call, and redirecting to use the declared Python method. The class will act as a 

Proxy to the Java interfaces. Define at minimum the javainterfacesattribute, and declare java methods with the 

java_method() decorator. 

javacontextIndicate which class loader to use: „system‟ or „app‟, default to „system‟: 

 By default, we assume that you are going to implement a Java interface declared in the Java API. It will use 

the „system‟ class loader. 

 On android, all the java interfaces that you ship within the APK are not accessible with the system class 

loader, but with the application thread class loader. So if you wish to implement a class from an interface 

you‟ve done in your app, use „app‟. 

jnius.java_method(java_signature, name=None) 

Decoration function to use with PythonJavaClass. The java_signature must match the wanted signature of the 

interface. The name of the method will be the name of the Python method by default. You can still force it, in 

case of multiple signatures with the same Java method name. 

Another library in use is the kivy, an open source library for developing mobile applications with a Natural User 

Interface (NUI). Kivy framework provides all elements required for producing an application such as: 

 extensive input support for mouse, keyboard, TUIO, and OS-specific multitouch events, 

 a graphic library using only OpenGL ES 2, and based on Vertex Buffer Object and shaders 

 a wide range of Widgets that support multitouch 

 an intermediate language (Kv) used to easily design custom Widgets. 

 

In the upcoming android devices every element is important so that our application is compatible and 

get away from bugs. The kivy language is used to describe the user interface and interactions. Thus the access to 

java classes is made with the help of pyjnius and kivy and now a module which links the extracted date to the 

device calendar which is in java. The subject and other details extracted are added to the device. Since to make 

it general the whole process we bind all these using a tool called the buildozer which will automate the whole 

process and generates an apk. Buildozer will initialte downloads and sets up all the prequisites for python-for-

android, including the android SDK and NDK, then builds an apk that can be automatically pushed to the 

device. 

 

 

https://pyjnius.readthedocs.io/en/latest/api.html#jnius.java_method
https://pyjnius.readthedocs.io/en/latest/api.html#jnius.PythonJavaClass
https://en.wikipedia.org/wiki/TUIO
https://en.wikipedia.org/wiki/OpenGL_ES
https://en.wikipedia.org/wiki/Vertex_Buffer_Object
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/GUI_widget
https://en.wikipedia.org/wiki/Multitouch


  NLP Based Event Extraction from Text Messages 

International Conference on Future Technology in Engineering – ICFTE’16                                           78 | Page 

College of Engineering Perumon 

IV. Experiment Results 
The major aim of the proposed work is to develop an application in order to automate the process of 

event extraction from text messages and add them on to the calendar. We considered a large set of messages and 

from each we extracted the event date place and time if its present in that. 

Consider the following messages and the extraction process. 

 

CASE 1: When all the details are specified: 

a. The criteria 8 coordinators meeting will be at 4.10pm today in conference hall. Inconvenience is 

regretted. 
[('The', 'NN'), ('criteria', 'NN'), ('8', 'TM'), ('coordinators', 'NN'), ('meeting', 'NN'), ('will', 'VB'), ('be', 'VB'), ('at', 

'IN'), ('4.10pm', 'TM'), ('today', 'DATESPEC'), ('in', 'IN'), ('conference', 'NN'), ('hall', 'NN'), ('.', 'PUN'), 

('Inconvenience', 'NN'), ('is', 'VB')] 

(NP The/NN criteria/NN 8/TM coordinators/NN  meeting/NN will/VB be/VB at/IN 4.10pm/TM 

today/DATESPEC in/IN conference/NN  hall/NN ./PUN Inconvenience/NN is/VB) 

Subject: The criteria 8 coordinators meeting  

Place: conference hall  

Date: 16-04-2016 

Time: 4.10pm  

  

b. Dear sir, a meeting of Research Council is scheduled at 3 PM to 3.20PM on 29th February in the 

Conference hall. All members are requested to attend..DrChithraprasad, Dean, Research  

[('Dear', 'SAL'), ('sir', 'SAL'), (',', 'NN'), ('A', 'NN'), ('meeting', 'NN'), ('of', 'IN'), ('Research', 'NN'), ('Council', 

'NN'), ('is', 'VB'), ('scheduled', 'VB'), ('at', 'IN'), ('3', 'TM'), ('PM', 'NN'), ('to', 'IN'), ('3.20PM', 'TM'), ('on', 'IN'), 

('29th', 'DATEUNS'), ('February', 'MONTH'), ('in', 'IN'), ('the', 'DT'), ('', 'NN'), ('Conference', 'NN'), ('hall', 'NN'), 

('.', 'PUN'), ('All', 'NN'), ('members', 'NN'), ('are', 'NN'), ('requested', 'VB'), ('to', 'IN'), ('attend..Dr', 'NN'), 

('Chithraprasad', 'NN'), (',', 'NN'), ('Dean', 'NN'), (',', 'NN'), ('Research', 'NN')] 

(NP,/NN A/NN meeting/NNof/INResearch/NN Council/NNis/VBscheduled/VBat/IN  

3/TMPM/NNto/IN3.20PM/TMon/IN 

29th/DATEUNSFebruary/MONTHin/INthe/DT/NNConference/NNhall/NN  ./PUN 

All/NNmembers/NNare/NNrequested/VBto/INattend..Dr/NN Chithraprasad/NN ,/NN Dean/NN ,/NN 

Research/NN),  

Subject: A meeting of Research Council  

Place:  Conference hall  

Date: 29-02-2016 

Time: 3 

 

CASE 2: When some details are not present: 

a. All Accenture selects please be present at the APJ hall by 3.45pm. 

[('All', 'NN'), ('Accenture', 'NN'), ('selects', 'NN'), ('please', 'VB'), ('be', 'VB'), ('present', 'NN'), ('at', 'IN'), ('the', 

'DT'), ('APJ', 'NN'), ('hall', 'NN'), ('by', 'IN'), ('3.45pm', 'TM'), ('.', 'PUN')] 

(NP All/NNAccenture/NNselects/NN please/VBbe/VBpresent/NNat/INthe/DTAPJ/NN hall/NN 

by/IN3.45pm/TM./PUN) 

Subject: All Accenture selects  

Place: APJ hall  

Time: 3.45pm 

 

b.There will be a meeting at 4-10-2016 at apj hall. 

[('There', 'EX'), ('will', 'VB'), ('be', 'VB'), ('a', 'DT'), ('meeting', 'NN'), ('on', 'IN'), ('4-10-2016', 'DATESPEC'), 

('in', 'IN'), ('apj', 'NN'), ('hall', 'NN'))] 

(NPwill/VBbe/VBa/DTmeeting/NNon/IN4-10-2016/DATESPEC in/INapj/NN hall/NN) 

Subject: meeting  

Place: apj hall 

Date: 4-10-2016 

 

Case 3: Personal Message:  

a. lets hangout today . 

[('lets', 'NNS'), ('hangout', 'NN'), ('today', 'DATESPEC'), ('.', 'PUN')] 

(NP lets/NNS hangout/NN today/DATESPEC ./PUN) 



  NLP Based Event Extraction from Text Messages 

International Conference on Future Technology in Engineering – ICFTE’16                                           79 | Page 

College of Engineering Perumon 

Subject: hangout  

Date: 16-04-2016 

 

b. party at 4. 

[('party', 'NN'), ('at', 'IN'), ('4', 'TM'), ('.', 'PUN')] 

(NP party/NN at/IN 4/TM ./PUN) 

Subject: party  

Time: 4 

 

Case 4: Message with incorrect output: 

a. Are you free today.Letsmeeet at 4 pm . 

[('Are', 'NN'), ('you', 'NN'), ('free', 'NN'), ('today', 'DATESPEC'), ('.', 'PUN'), ('Lets', 'NNS'), ('meeet', 'NN'), ('at', 

'IN'), ('4', 'TM'), ('pm', 'NN'), ('.', 'PUN')] 

(NPAre/NN you/NN  free/NN  today/DATESPEC  ./PUN  Lets/NNS  meeet/NN  at/IN  4/TM  pm/NN ./PUN) 

Subject: Are you free  

Date:18-04-2016 

Time:4 pm 

 

b. My brother's engagement is on 4th April and wedding on 6th may. You and your family are invited. 

[('My', 'NN'), ("brother's", 'NN'), ('engagement', 'NN'), ('is', 'VB'), ('on', 'IN'), ('4th', 'DATEUNS'), ('April', 

'MONTH'), ('and', 'CON'), ('wedding', 'NN'), ('on', 'IN'), ('6th', 'DATEUNS'), ('may', 'MONTH'), ('.', 'PUN'), 

('You', 'NN'), ('and', 'CON'), ('your', 'NN'), ('family', 'NN'), ('are', 'NN'), ('invited.', 'IN')] 

(NP  My/NN  brother's/NN  engagement/NN  is/VB  on/IN  4th/DATEUNS  April/MONTH  and/CON  

wedding/NN  on/IN  6th/DATEUNS  may/MONTH  ./PUN  You/NN  and/CON  your/NN  family/NN  are/NN  

invited./IN) 

Subject: My brother's engagement  

Date: 4-04-2016 

    TABLE II: Test-case results 
TYPES OF MESSAGE ACCURACY 

Message with complete information 48 out of 50 

Message with complete information 44 out of 50 

Informal messages 14 out of 20 

 

V. Conclusion 

Table II gives details of the results obtained from the test cases. Still this project came be developed 

with use of AI(Artificial Intelligence) by which we can train data set can obtain more accurate results. Messages 

can be discarded if it is not relevant. By using classifiers like Bayesian classifier, the messages can be classified 

initially so that we can avoid each message to be taken through all these processing steps. Further, this 

application can be implemented as a standalone. It can be extended to application which does not require 

network. As of now a server support is needed for the application to work, this can be made to a standalone one 

so that the application can work without a server after the application is installed. Also this project cannot 

produce mapping for message with multiple events. 

     

References 
[1]. Julie A. Black and Nisheeth Ranjan. Automated Event Extraction from Email. 2004.  

[2]. Deyu Zhou,Liangyu Chen, Yulan He, “ A Simple Bayesian Modelling Approach to Event Extraction from Twitter”, 

52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, vol. 2, pp.700-705, Jun 2014. 

[3]. Cunningham, Hamish, et al. “Developing Language Processing Components with GATE (a User Guide).”2003.  

[4]. Manning, Cristopher D. and Hinrich Schütze. Foundations of Statistical Natural Language Processing. Cambridge, 

MA: The MIT Press. 2003. 

[5]. Califf, Mary Elaine and Raymond J. Mooney. “Bottom-Up Relational Learning of Pattern Matching Rules for 

Information Extraction.” 2003. 

[6]. Choong-Nyoung Seon, Harksoo Kim and Jungyun Seo, “A Efficient appointment information extraction from short 

messages in mobile devices with limited hardware resources, Pattern Recognition Letters,” ACM Pattern 

Recognition letters, vol. 32, pp. 127-133, Jan 2001.  

[7]. Richard Cooper, Sinclair Manson, Extracting information from short messages, Springer Berlin Heidelberg, 2007, 

vol. 4587, ch. Data Management. Data, Data Everywhere, pp. 224-234.  

[8]. Stuart Russell and Peter Norvig. Artifical Intelligence: A Modern Approach. Second Edition. Pearson Education, Inc. 

2003.  

[9]. Dalli, Angelo. “Automated Email Integration with Personal Information Management Applications.” 2004. 


